Wednesday, November 18, 2015

Map Side Join - Hadoop MapReduce


Design Pattern - MAP Side Join 


You will use mapside join if one of your table can fit in memory which will reduce overhead on your sort and shuffle data.

Prerequisites:

  • Data should be partitioned and sorted in particular way.
  • Each input data should be divided in same number of partition.
  • Must be sorted with same key.
  • All the records for a particular key must reside in the same partition.

Dataset to be used

File Name - u.item 

u.item     -- Information about the items (movies); this is a tab separated
              list of
              movie id | movie title | release date | video release date |
              IMDb URL | unknown | Action | Adventure | Animation |
              Children's | Comedy | Crime | Documentary | Drama | Fantasy |
              Film-Noir | Horror | Musical | Mystery | Romance | Sci-Fi |
              Thriller | War | Western |
              The last 19 fields are the genres, a 1 indicates the movie
              is of that genre, a 0 indicates it is not; movies can be in
              several genres at once.
              The movie ids are the ones used in the u.data data set.

Example -

1|Toy Story (1995)|01-Jan-1995||http://us.imdb.com/M/title-exact?Toy%20Story%20(1995)|0|0|0|1|1|1|0|0|0|0|0|0|0|0|0|0|0|0|0
2|GoldenEye (1995)|01-Jan-1995||http://us.imdb.com/M/title-exact?GoldenEye%20(1995)|0|1|1|0|0|0|0|0|0|0|0|0|0|0|0|0|1|0|0
3|Four Rooms (1995)|01-Jan-1995||http://us.imdb.com/M/title-exact?Four%20Rooms%20(1995)|0|0|0|0|0|0|0|0|0|0|0|0|0|0|0|0|1|0|0
4|Get Shorty (1995)|01-Jan-1995||http://us.imdb.com/M/title-exact?Get%20Shorty%20(1995)|0|1|0|0|0|1|0|0|1|0|0|0|0|0|0|0|0|0|0
5|Copycat (1995)|01-Jan-1995||http://us.imdb.com/M/title-exact?Copycat%20(1995)|0|0|0|0|0|0|1|0|1|0|0|0|0|0|0|0|1|0|0

Filename - u.data

u.data     -- The full u data set, 100000 ratings by 943 users on 1682 items.
              Each user has rated at least 20 movies.  Users and items are
              numbered consecutively from 1.  The data is randomly
              ordered. This is a tab separated list of 
        user id | item id | rating | timestamp. 
              The time stamps are unix seconds since 1/1/1970 UTC   

Example - 

196 242 3 881250949
186 302 3 891717742
22 377 1 878887116
244 51 2 880606923
166 346 1 886397596

MapReduce Program :









Output will be like this : 

Til There Was You (1997) 2.3333333333333335
1-900 (1994) 2.4285714285714284
101 Dalmatians (1996) 2.8536585365853657
12 Angry Men (1957) 3.6048387096774195
187 (1997) 3.5224913494809686















No comments:

Post a Comment